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Abstract
Light-duty transportation continues to be a significant source of air pollutants that cause
premature mortality and greenhouse gases (GHGs) that lead to climate change. We assess PM2.5

emissions and its health consequences under a large-scale shift to electric vehicles (EVs) or Tier-3
internal combustion vehicles (ICVs) across the United States, focusing on implications by states
and for the fifty most populous metropolitan statistical areas (MSA). We find that both Tier-3
ICVs and EVs reduce premature mortality by 80%–93% compared to the current light-duty vehicle
fleet. The health and climate mitigation benefits of electrification are larger in the West and
Northeast. As the grid decarbonizes further, EVs will yield even higher benefits from reduced air
pollution and GHG emissions than gasoline vehicles. EVs lead to lower health damages in almost
all the 50 most populous MSA than Tier-3 ICVs. Distributional analysis suggests that relying on
the current gasoline fleet or moving to Tier-3 ICVs would impact people of color more than White
Americans across all states, levels of urbanization, and household income, suggesting that vehicle
electrification is more suited to reduce health disparities. We also simulate EVs under a future
cleaner electric grid by assuming that the 50 power plants across the nation that have the highest
amount of annual SO2 emissions are retired or retrofitted with carbon capture and storage, finding
that in that case, vehicle electrification becomes the best strategy for reducing health damages from
air pollution across all states.

1. Introduction

In the United States, emissions standards set upper
limits on emissions per mile for various air pollutants
for new vehicles. These standards have helped drastic-
ally reduce air pollutants from light-duty vehicles
(LDVs). Between Tier 1 (1994) and Tier 3 stand-
ards (2017), the allowed NOx (nitrous oxide) and
PM2.5 (particulate matter less than 2.5 µm) emissions
per mile from gasoline vehicles decreased by more
than 90% [1, 2]. However, LDVs continue to contrib-
ute to 10% of the total PM2.5 attributable premature
mortality, with disproportionate impacts on people

of color and minorities [3–5]. Historical race-based
housing segregation and land-use practices like build-
ing freeways through communities of color perpetu-
ate these systemic transportation inequalities des-
pite massive improvements in overall air quality [3,
6]. Studies have shown people of color are consist-
ently exposed to higher concentrations of NO2 (a
marker for traffic pollution) than White people [7,
8]. Reduction in traffic congestion with the introduc-
tion of electronic tolls has reduced premature mor-
tality by ∼8% and low birth weight among mothers
by ∼10%, with larger benefits for African Americans
[9]. On the climate front, the transportation sector
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leads in total greenhouse gas (GHG) emissions in the
U.S. (1.7 billionmetric tons per year), with LDVs con-
tributing to 58% of the total transportation-related
emissions [10].

Primary PM2.5 emissions from gasoline internal
combustion vehicles (ICVs) include tailpipe emis-
sions, dust re-suspension, and tire and brake wear.
Secondary PM2.5 is also formed due to chemical
reactions of precursor species such as nitrous oxides
(NOx), non-methane organic gases (NMOGs—a
subclass of volatile organic oxides comprising of non-
methane hydrocarbons and oxygenated hydrocar-
bons), and ammonia [2]. Emissions standards set
a quantitative limit of pollutant emissions that new
vehicles can emit per mile. The first set of standards,
called Tier 1 standards, were phased in between 1994
and 1997, followed by Tier 2 standards between 2004
and 2009. Tier 3 standards were finalized in 2015 and
will be phased between 2017 and 2025. The standards
have been tightened considerably: per-mile gasoline
NOx +NMOGand PM2.5 limits under regulatory test
conditions have decreased by 91% and 97%, respect-
ively, between 1994 and 2022. In SI section S.2a, we
provide more details on how the standards for dif-
ferent pollutants, vehicles, certification bins, and test
procedures have evolved.

Under Tier 3 standards, manufacturers need to
adhere to emissions limits under laboratory testing
conditions for their total annual sales as well as for
each vehicle. Tier 3 standards introduced a limit on
per mile NMOG + NOX emissions instead of limits
of NMOG and NOx individually, as was done pre-
viously. The standard also includes per-mile limits
for PM2.5, carbonmonoxide (CO), and formaldehyde
[2]. Manufacturers can balance NOx +NMOG emis-
sions across individual vehicles sold in a year as
long as the new-sale fleet-wide emissions standard
is achieved. Each vehicle is required to attain the
PM2.5 emission standard. Standards also depend on
the driving conditions they are tested on. Federal
Test Procedure or FTP simulates city driving condi-
tions, US06 approximates high acceleration aggress-
ive driving, and supplemental FTP is a mixture of
city driving, aggressive driving, and driving with air
conditioning (SI section S.2a) [11]. For this work, we
consider FTP and SFTP emissions standards as two
scenarios for Tier-3 ICVs. New vehicles on the road
generally emit below the emissions standards [12,
13], but in the past, some manufacturers have used
defeat devices to disable emissions controls under
real-world driving [14]. Also, vehicle emissions per
mile increase significantly with age and cumulative
mileage [15–21].

Electric vehicles (EVs) have emerged as another
alternative. EVs can reduce transportation-related air
pollution, associated inequities, and GHG emissions
under a low-emitting electricity grid. PM2.5 health
damages from EVs depend on the emission intens-
ity of the electricity used to charge them. Vehicle

charging demand, which constituted only 11 out of
4116 TWh of electricity demand [22, 23], will sig-
nificantly increase with rising EV penetration. Total
electricity generation in the U.S. was associated with
∼16 400 PM2.5 premature deaths in 2014, with Black
and White people experiencing higher premature
mortality. Coal power plants were responsible for
∼93% of electricity PM2.5-related premature mortal-
ity in theU.S [24].Hence, coal retirementswill be cru-
cial to reducing the health impacts of large-scale EV
transition.

Previous work has found that EVs powered by
low-emitting electricity reduce health impacts by 50%
compared to conventional gasoline vehicles. In com-
parison, those powered by coal-based or the then
‘grid-average’ emissions intensity increase damages
by 80% [25]. Hence, reducing upstream air emissions
from electrified transportation will require reducing
air emissions from the power sector. This shift will
have different consequences across the country, given
the different composition of electricity generation.
Several studies have compared the health damages
of transportation technologies in the US using a
marginal damages approach, wherein an incremental
vehicle mile traveled (VMT) is small enough to be
treated asmarginal, and damages are calculated as the
product of emission factor (emissions per mile) and
marginal damages of a pollutant [26]. Using a mar-
ginal damages approach, Tong and Azevedo find that
in the Western US and New England, switching to
an EV would reduce monetized damages when com-
pared to gasoline vehicles, whereas gasoline hybrid
vehicles would be less damaging in the Midwest [27].
Choma et al show that EVs have less health damages
than ICVs in all U.S. metropolitan statistical areas
(MSAs) [28]. Holland et al calculate the net envir-
onmental benefits of vehicle electrification, finding
those to be positive for Asian and Latino Americans
(data from 2010 to 2014) [29, 30]. Other studies
have used chemical transport models to estimate
air quality and distributional equity consequences of
LDV electrification to find similar conclusions. PM2.5

changes due to electrification depend on the source
and location of electricity generation used to charge
electric vehicles. EVs increase pollution in areas close
to coal power plants [31] but reduce pollution in
urban regions [32, 33] and in states with low-carbon
electricity like California [34]. Peters et al [35] estim-
ate health benefits and avoided mortality at 25% and
75% EV adoption with three different electricity grid
scenarios, including the current grid and a future
low-emissions one. The highest health benefits are
achieved with a low-emitting grid, and increasing EV
adoption without reducing emissions from the grid
only provides small health benefits. The composition
of electricity generation, the concentration of local
air pollutants, and vehicle technologies have changed
substantively since these previous studies were pub-
lished. For example, the per-mile emissions from Tier
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3 vehicles for NOX, PM2.5, and volatile oxides are
96%, 80%, and 95% smaller than those of the cur-
rent LDV fleet (table 1). EVs and the electricity sec-
tor have also evolved. Since 2015, the range of new
EVs has increased by 9%, and coal-generated electri-
city has been reduced by 30% [36, 37].

In this work, we estimate PM2.5 related health
impacts and change in socio-economic disparities
associatedwith four scenarios: (i) a business-as-usual,
reflecting the current LDV fleet; (ii) a replacement
of the current LDV fleet with gasoline vehicles that
meet the model year 2022 Tier 3 emissions stand-
ards, (iii) replacement of the current LDV fleet with
a range of EV models charged with the current elec-
tricity grid, and (iv) replacement of current LDV
fleet with a range of EV models charged with a
future clean electricity grid where 50 power plants
with the highest SO2 emissions have been retired or
retrofitted with carbon capture and storage (CCS).
In post-combustion CCS, SO2, NOx, and PM2.5 are
removed from the flue gas before CO2 is captured and
removed [38].

We use a reduced complexity air quality model
(InMAP) [39] to estimate the change in PM2.5 con-
centration due to changes in emissions from point
sources (power plants) and area sources (gasoline
ICVs) across the U.S [40]. Reduced complexity air
quality models (RCM) have become a popular tool
in recent years to evaluate the air quality implications
of different policies or technologies [4, 24, 25, 29,
30, 41–44]. Some widely used RCMs include InMAP,
AP3, and EASIUR [39, 45–47]. Previous research has
shown that the three RCMs produce marginal dam-
ages within the same order of magnitude despite
structural differences. For example, for ground-level
primary PM2.5, the models have very similar values
across all counties, with Pearson’s correlation ranging
from 0.73 to 0.81. Benchmarking studies also indicate
that RCMs can be used instead of chemical transport
models for scenariomodeling with only amodest loss
of accuracy [48, 49].

We use local air pollutant emissions and emis-
sions of GHGs from the electricity sector [40, 50, 51].
For Tier-3 ICV, we use Tier-3 emission standards for
model year 2022 in FTP and SFTP test conditions [1,
2]. We use census block group data (ACS 2019–2020)
[52, 53] as a source of information for demographic
characteristics. We use our previous estimates of the
energy needed to charge EVs in different locations,
which account for ambient temperature conditions,
drive cycle (city, rural, or combined), vehicle make,
and model [54].

The rest of this paper is organized as follows:
we describe data and methods used for the analysis,
followed by air quality and climate change impacts of
the fleet-wide use of EVs and Tier-3 ICVs. We assess
equity implications across different socio-economic
aspects and conclude with findings and recom-
mendations. The key contribution of this work is

to assess how less polluting conventional vehicles
(Tier-3 ICVs) would fare when compared to electric
vehicles in terms of air pollution and distributional
equity across the nation. While past studies have
detailed the increasing stringency of emissions over
time [21, 55] and their positive impact on air quality
[56–58], our work incorporates Tier-3 vehicles and
provides important regional conclusions.

2. Methods and data

We estimate impacts on climate change and PM2.5-
related health and socio-economic disparities associ-
ated with the following scenarios: (i) a business-as-
usual scenario, where we compute the health dam-
ages from the current fleet of LDV across the U.S.;
(ii) a replacement of the current fleet with gasoline
vehicles that meet the strictest emissions standards
(Tier-3 ICV), and (iii) a replacement of the current
fleet of LDVs with electric vehicles that are charged
with the current grid and (iv) a possible future low-
carbon electricity grid where 50 plants with highest
annual SO2 emissions are retired or retrofitted with
CCS.We estimate health impacts from these scenarios
by race, ethnicity, geography, and income for states
in the contiguous United States and for the 50 most
populous MSAs. Throughout this work, health con-
sequences refer to the attributable premature mor-
tality associated with the increase in PM2.5 concen-
tration associated with primary PM2.5 emissions and
precursor pollutants, such as SO2 and NOx, from the
different transportation technologies studied in this
paper.

There are three modeling steps in our methods.
Firstly, we estimate annual tailpipe emissions from
ICVs (Tier-3 and current fleet) at the census tract
level. These emissions are treated as ground-level
area source emissions, i.e. the annual emissions of
each pollutant are assumed to be uniformly distrib-
uted across the census tract (SI sections S.1 and S.2).
InMAP, the reduced complexity air quality model
used in this work, allocates these input emissions to
model cells using area weighting (SI section S.5c)
and converts pollutant emissions to changes in PM2.5

concentration. The grid cell size in InMAP varies
depending on population density (figure 1), with the
largest grid cell of 48 km × 48 km in sparsely pop-
ulated regions and 1 km × 1 km in densely popu-
lated urban areas. Pollution from electric vehicles is
attributed as an increase in emissions proportional
to the increase in electricity generation due to elec-
tric vehicle charging demand. Emissions from power
plants are treated as point sources in a specific InMAP
grid cell, and the change in PM2.5 concentration is
estimated for all power plants. After estimating the
change in PM2.5 concentration due to each techno-
logy choice, we spatially overlay the census block
group with InMAP grid cells to find the counts of
the total population and population of races and
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Figure 1.Modeling steps and spatial resolution of inputs, outputs, and post-processing used in this work.

ethnicities exposed to the change in PM2.5. Using
a concentration-response function, total premature
deaths are calculated at the census block group level.
Mortality rate (deaths per 100 000 people) is reported
at two aggregation resolutions—MSA level and state
level. State level captures the heterogeneity in trans-
portation and electricity emissions and provides ana-
lysis to sub-national decision-makers regarding EV
adoption policies.

2.1. Assumptions regarding driving patterns
For all scenarios, we use estimates of VMT at the
census tract level using multiple data sources [40, 59,
60] and as explained in detail in SI section S.1. We
assume that census tract level miles driven are the
same across scenarios. In the SI section S.6c, we also
run our analysis using county-level emissions as the
National Emissions Inventory, one of our primary
sources of emissions from the current LDV fleet,
reports total emissions at the county level and dis-
cuss the differences in the results. Across all scen-
arios, dust suspension and tire break-and-wear emis-
sions of ICVs and EVs are not included. However,
emerging evidence shows EVsmay have smaller brake
wear emissions due to regenerative braking but lar-
ger tire wear emissions due to higher weight [61, 62].
Internal combustion engines equipped with selective
catalytic reactors are an emerging source of ammo-
nia due to ‘ammonia slipping,’ which occurs due to
non-optimal temperatures in the exhaust chamber
[63–65]. We do not include this effect in the main
results as emissions standards currently do not reg-
ulate ammonia, but it could be an emerging source of
secondary PM2.5.

2.2. Census data
We use population, race, and ethnicity data from
ACS 2016–2020, obtained via NHGIS IPUMS [53].
We use eight racial-ethnic groups. People who self-
identify as Hispanic or Latino ethnicity are included
here as Latino (all races). The seven racial groups
in ACS (i.e. Black, White, Asian, Native American

& American Indian (Native), Hawaiian & Pacific
Islander (HPI), Other, and Mixed here refer to non-
Hispanic individuals.

Census block group-level population data are dis-
tributed to the InMAP grid as an area-weighted aver-
age (figure 1). The total population is 324.41 million,
out of which 195.5 million are White, 59.1 million
areHispanic/Latino, 39.94million Black, 17.6million
Asian, 8.8 Mixed, 1.96 million Native American and
American Indian, and 0.4 HPIs.

2.3. Baseline: characterization of the current LDV
transportation fleet
National Emissions Inventory (NEI 2017) reports that
total on-road non-diesel LDVs drove 2.65 trillion
miles, emitting 1.9 million short tons of nitrogen
oxides (NOx), 1.5 million short tons of VOCs, and
0.05 million short tons of primary PM2.5 [40]. We
use county-level emissions of NOx, NMOG (VOC),
and primary PM2.5 reported by NEI and redistrib-
ute them to census tracts based on VMT estimates
described above to model the health consequences of
emissions as our current LDV fleet. Ammonia emis-
sions for the current LDV fleet are not included in the
analyses in the main text to enable comparison with
emissions standards that do not regulate ammonia.
Change in pollution exposure with changes in emis-
sions is modeled using InMAP, a reduced complexity
air quality model.

2.4. Scenario 1: fleetwide adoption of gasoline
Tier-3 ICV
Emissions standards set quantitative limits of pollut-
ant emissions that new vehicles can emit per mile.
Between Tier 1 (1994) and Tier 3 standards (2022),
per-mile gasoline NOx + NMOG and PM2.5 lim-
its under regulatory test conditions have decreased
by 91% and 97%, respectively. For this work, we
rely on model year 2022 Tier 3 emissions standards
in the FTP drive cycle and supplemental FTP drive
cycle as two possible scenarios (SI section S2a). We
use fleet-wide average emissions standard values for
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Table 1. Scenarios considered for Tier-3 ICVs.

Scenario Drive cycle
NOX + NMOG

(mg/mile) NOX/NMOG ratio PM2.5 (mg/mile)

1a FTP 51 50/50 3
1b SFTP 70 50/50 10
1c FTP 51 70/30 3
1c FTP 51 30/70 3

Table 2. Electricity requirements for vehicle electrification.

NERC region

Sub-region
represented in the
continental United
States

Electricity generated
in the NERC region
in 2019 (TWh)

Average energy
requirement of
short-range and
long-range EV in
sample per 1000

vehicle-miles (kWh)

Total electricity
requirement

from converting
the fleet (TWh)

MRO Upper Midwest and
Great Plains

448 326–396 52–68

NPCC New York+ New
England

231 312–406 68–93

RFC Great Lakes 918 306–401 170–228
SERC Southeast and Florida 1,354 296–379 233–306
TRE Texas 414 292–365 49–65
WECC Rocky Mountain,

Southwest, and Pacific
Coast

738 317–396 167–223

NOX and NMOG. Since Tier 3 standards regulate
total NOx + NMOG emissions, we assume different
ratios of NOX and NMOG (50:50, 30:70, or 70:30)
to account for uncertainty [66] (SI sections S2b and
S6b). We assume that all vehicles meet the PM2.5

mandated standard. Because the emissions of new
Tier 3 vehicles will change with age and cumulative
mileage, our estimates represent a lower bound of
health damages for ICVs. Table 1 shows the emissions
per mile for Tier 3 emissions standards (model year
2022) on FTP and SFTP drive cycles with different
NOx and NMOG ratios.

2.5. Scenario 2: fleetwide adoption of electric
vehicles
We use results from previous works to estimate a
range of electricity consumption if the entire exist-
ing stock of vehicles were to be substituted by elec-
tric vehicles [54]. In brief, the energy consumption of
electric vehicles is significantly impacted by both tem-
perature and type of driving. We estimate the elec-
tricity required by an electric vehicle by using pub-
licly available laboratory-tested data on energy con-
sumption per mile at different temperatures, drive
cycles, and vehicle miles traveled, as described above.
Our estimates account for the effect of hourly ambi-
ent temperature at the county level and whether the
type of driving in a county is predominantly city,
highway, or combined driving. We use the Nissan
Leaf (economy car, 40 kWh battery) and the Tesla
Model S (luxury car, 100 kWh battery) as reason-
able low and high bounds of the energy requirements

of EVs (SI section S.3a) [67]. We assume vehicles
are charged with the fleet of electricity generators in
their NERC regions (SI section S.5b). NERC regions
roughly divide the contiguous United States into six
regional reliability entities and differ in power systems
characteristics and resources. In table 2, we report
the range of average energy requirements for Nissan
Leaf and Tesla Model S across counties in different
NERC regions, as estimated in our previouswork, and
the rough geographic representation of each NERC
region by sub-regions of the United States.

We assume the electricity generated to meet the
electricity demand from charging the vehicles will
be distributed across power plants proportionally to
their annual 2019 generation.We ignore the potential
redispatch of power plants due to the demand for EV
electricity. We also do not account for potential elec-
tricity generation capacity limits for a plant that may
occur at high charging levels or for marginal gener-
ator characteristics. This assumption is suitable given
that we are considering scenarioswheremany vehicles
are being replaced, and we are using annual emis-
sions from the electricity grid.We estimate plant-level
emissions of SO2, and NOX using NEI 2017 and
primary PM2.5 e-GRID 2019 data [40, 50, 68]. Our
dataset includes 3342 fossil power plants out of a
total of 3400. Our estimates of total emissions are
0.13 million short tons for PM2.5, 1.08 million short
tons for SO2, and 1.16 million short tons of NOx. We
exclude from our analysis 30 renewable plants that
have a small percentage of oil, coal, or gas. To our
knowledge, this is themost exhaustive and up-to-date
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Table 3. Total electricity generation (TWh) and total pollution emissions in NERC regions (2019).

NERC region

Electricity
generation
(TWh) SO2 (tons) NOx (tons) PM2.5 (tons) CO2 (million tons)

Percentage
of renewable
generation

MRO 448 175 209 160 380 12 684 232 34
NPCC 231 8,227 30 046 4,764 49.2 25
RFC 918 286 512 289 743 38 741 443 6
SERC 1,354 369 212 321 104 46 632 618 7
TRE 414 118 936 106 874 9,525 180 20
WECC 738 98 667 216 045 16 548 284 39

characterization of the current electricity system for
evaluating air pollution-related health impacts.

For our analysis of the future clean grid where
50 most SO2 polluting power plants were retired or
retrofitted with CCS, we assume that they are either
replaced by renewable energy or did not have a reduc-
tion in their generation due to CCS. All retired or
retrofitted plants in the continental US, except one,
are coal power plants (SI section S.3d). These 50
power plants constituted 78 GW in nameplate capa-
city, 335 TWh of generation, and emitted 253 kilo-
tons NOx, 663 kilotons SO2, 20 kilotons PM2.5, and
364 447 kilotons CO2 emissions. For context, cumu-
lative wind and solar capacity in the US are nearly
136 GW and 73.5 GW [69, 70] and 300 GW of wind
and 947 GW of solar are currently in transmission
interconnection queues [71]. A complete list of power
plants, state-wise capacity, generation removed or
retrofitted, and emissions avoided are given in SI
section S.3d.

Table 3 shows the total electricity generation in
each NERC region, the percentage of renewable gen-
eration, and the total emissions of SO2, NOx and,
PM2.5, and CO2 for 2019 (more details in SI sections
S.3b and c).

2.6. Modeling the change in PM2.5 concentration
We use InMAP, a reduced complexity air qual-
ity model [39, 45] to estimate the change in con-
centration of PM2.5 across our different scenarios.
InMAP uses an Eulerian grid model to estimate the
annual average PM2.5 concentration change attrib-
uted to a change in annual emissions based on steady-
state solutions to equations representing pollution
emission, transport, transformation, and removal.
InMAP’s representation of chemistry and meteor-
ology uses spatially varying parameters obtained
from a detailed chemical transport model simulation
(the WRF-Chem model coupled with the National
Emission Inventory). The InMAP source-receptor
matrix (ISRM) provides a relationship between
source damages (i.e. damages across the country that
are attributable to emissions in a specific grid cell)
and receptor damages (i.e. the damages suffered by
people in a particular grid cell, regardless of where
the emissions occurred). This ISRMwas built by run-
ning more than 150 000 runs of InMAP, each time

inputting a 1-t emission change from a single grid
(out of ∼50 000 grid cells) at three different heights
(ground, medium, and high height). ISRM as a data-
set contains estimates of a linear relationship between
marginal changes in emissions at every source loca-
tion and marginal changes in annual-average PM2.5

concentration at a receptor location [44, 72]. The
grid-cell size in InMAP varies from1 km× 1 km (typ-
ically in urban areas) to 48 km × 48 km (typically in
rural areas), depending on the gradient in the popu-
lation density and pollutant concentrations. Fine grid
in populated areas is critical to accurately estimate
air pollution-related health disparities [43, 73]. Our
study explicitly looks at receptor damages (where the
damages occur) along with a granular characteriza-
tion of where damages originate (sources).

2.7. Estimating health damages due to PM2.5

Premature mortality due to PM2.5 concentration
changes is calculated using the county-wide hypo-
thetical ‘underlying incidence,’ the mortality hazard
ratio derived from the concentration-response func-
tion, and the population in the grid cell. We use the
approach of Apte et al [74] to calculate the hypothet-
ical underlying incidence rate if there were no PM2.5

emissions, Io, c as:

Io,c =
Ic

HRc

where Ic is the reported county-level all-causemortal-
ity, HRc, is the average mortality hazard ratio caused
by PM2.5 in county c. HRc, in turn, is calculated as:

HRc =

∑n
i=1Pi × HR(Ci) fi,c∑n

i=1Pi

where Pi is the population in grid cell i; n is the
number of grid cells in county c; HR(Ci) is mor-
tality hazard ratio (GEMM in this study) resulting
from ambient PM2.5 concentration Ci i, and fi,c is
the area fraction of grid cell i that overlaps with
county c. We use ambient PM2.5 concentration from
Meng et al for 2019 [75]. The authors estimate ambi-
ent PM2.5 concentration using chemical transport
modeling, satellite remote sensing, and ground-based
measurements. We use baseline population-wide all-
cause mortality rates at the county level from the
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US Center for Disease Control (CDC) [76] for 2019.
Our unit of analysis is limited to the county level
as this is the smallest geographic unit with publicly
available health data from the CDC. While this CDC
data has been used extensively in studies to exam-
ine health outcomes and environmental disparities in
disadvantaged communities [77–79], health data at
finer spatial resolutions would increase the certainty
and accuracy in exposure and health disparity estim-
ates. Unfortunately, there is no such data in a pub-
licly available form. The average mortality rate Ic is
833.71 deaths per 100 000 people per year, and our
Io, c estimate is 790 deaths per 100 000 people per year
(SI section S5d).

Throughout this work, we use the mortality haz-
ard ratio HR(Ci) function from the Global Exposure
Mortality for non-accidental mortality (GEMM) to
calculate both the underlying incidence rate men-
tioned above and change in premature mortality due
to change in PM2.5 concentration from our scenarios.
Non-accidental mortality in GEMM corresponds to
non-communicable diseases and Lower Respiratory
Infections and uses data from 41 cohort studies from
16 countries to estimate the shape of the association
of ambient PM2.5 exposure and non-accidental mor-
tality. GEMM function is supralinear at lower con-
centrations, near linear at high concentrations, and
applies a counterfactual threshold of 2.4 µg m−3, the
lowest concentration observed in any of the cohort
studies. GEMM function assumes that PM2.5 expos-
ure does not affect health below this level. Some ver-
sions of the GEMM function are parameterized dif-
ferently depending on whether the function is seg-
mented by age and whether a cohort of Chinese
men with a wider PM2.5 exposure range than the
other studies is included. Our version applies a single
function to estimates of non-accidental mortality for
all ages above 25 and includes the Chinese male
cohort [80]. We use GEMM’s equation that uses
non-accidental mortality for all ages, which is as
follows:

HR (Ci) = e

0.143×

 ln

(
max(0, Ci−2.4)

1.6 +1

)

1+e

−(max(0, Ci−2.4)−15.5)
36.8



where HR(Ci) is the hazard ratio of mortality incid-
ence at PM2.5 concentrationCi in units ofmicrograms
per cubic meter—compared with a hypothetical
underlying incidence rate, Io in the absence of ambi-
ent PM2.5. Comparison of GEMM with other dose-
response functions is given in SI section S.4.

Mortality associated with the concentration of
PM2.5 in a grid cell is computed as:

M(Ci) = Pi

n∑
c

Io, c fi,cHR(Ci)

where M(Ci) are premature deaths caused by the
concentration of PM2.5 at location i, Pi is the

population in grid cell i, Io, c underlying incid-
ence rate for one n counties overlapping grid i
and fi,c is the fraction of grid cell i that overlaps
county c.

The transportation-attributable mortality rate is
aggregated at the state and MSA levels as follows:

Transportation attributable mortality ratepop or race

=
M(C)state or MSA(

Populationpop or race
)
state or MSA

× 100,00

3. Results

3.1. Switching the U.S. LDV fleet to EVs or Tier-3
ICVs reduces premature mortality from air
pollution in all states andmetropolitan statistical
areas (MSA)
For results across different scenarios, the
concentration-response function, all-cause mortal-
ity, the underlying incidence rate, and the population
counts remain the same. The changes in premature
mortality are only due to changes in air emissions
from different transportation choices. Tier-3 ICVs
and EVs reduce total mortality by 80%–92% com-
pared to the current fleet (SI section S6b). While
the underlying assumptions and risk function differ,
our estimates of premature mortality due to electric
vehicles are in agreement with the most recent study
by Peters et al [35]. We also present changes in PM2.5

exposure from different transportation choices in SI
section S6a.

The health benefits are particularly large for states
and MSAs with large populations. Figure 2(a) shows
the state-wide mortality rate of the current LDV fleet
compared to two alternative scenarios: a fleet-wide
transition to Tier-3 ICVs and EVs charged on the cur-
rent electricity grid. Estimates for Tier-3 ICVs may,
in practice, be higher in real-world conditions and
will increase with age and cumulative mileage. In the
future, electric vehicle emissions will be lower than
our estimates suggest since the grid is expected to con-
tinue decarbonizing.

Black circles and squares indicate Tier 3 emis-
sions standards for FTP and SFTP driving sched-
ules, respectively, with a ratio of 50:50 between NOx

and NMOG. Red and maroon circles indicate the
mortality attributable to low-range and high-range
EVs, respectively. The energy efficiency of EVs is
calculated using temperature and urbanization level
characteristics at the county level, as described in our
previous work [54]. The carbon intensity of elec-
tricity for each state is obtained from the Power
Sector Carbon Index [81, 82]. In figure 2(b), we
show estimates of CO2 emissions from the current
LDV fleet, of Tier-3 ICVs (gray bars), and of the
EVs considered in this study, using fuel economy of
the latest Corporate Average Fuel Economy (CAFE)
standards for passenger cars and trucks for 2021 (46.1,
32.6 MPG) and 2022 (48.2, 34.2 MPG) [83] and
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Figure 2. Comparison of mortality (deaths per 100 000 people) (a) and total CO2 emissions (million tonnes) (b) due to Tier-3
ICVs and EVs charged on the current grid compared to the current LDV fleet by state. States are arranged in decreasing order of
current LDV mortality by census region. Mortality ranges for Tier-3 ICVs are given by FTP and SFTP drive cycle with an assumed
ratio between NOX and NMOG of 1:1. In contrast, mortality ranges for EVs are given by whether the fleet-wide electrification is
done through a low-range Nissan Leaf or a high-range luxury Tesla Model S. CO2 emissions from ICVs are estimated using the
CAFE standards for the year 2021 and 2022 and EV CO2 emissions are calculated using the state Power Sector Index of 2021 as
outlined by [75, 76] along with data on miles driven and energy consumption details given in methods and data. The two
columns on the secondary Y axis show the state population (100 000 people) and state power sector carbon intensity [75].

the fuel economy of current LDV fleet (23 MPG)
[84].

We assume that the vehicle miles traveled are con-
stant for both technologies and are derived from NEI
2017, as explained in the methods and SI section
S.1. The secondary Y-axis in subfigures indicates
the size of the population of each state (2019) [52]
and state’s power sector carbon intensity (2021)
[82]. The states are ordered based on the decreas-
ing mortality attributable to the current LDV fleet
for each census region, i.e. South, Midwest, West,
and Northeast (SI section S.5a). In the Western US,
EVs have a lower mortality rate than Tier-3 ICVs,
except for Wyoming, which still relies on a signi-
ficant coal fleet. In the Northeast, EVs have similar
health damages to Tier-3 ICVs in all states except
Pennsylvania. In the Midwest, EVs have higher mor-
tality than Tier-3 ICVs in most states, particularly
in the Ohio Valley. In the Southern US, EVs have
higher mortality rates than Tier-3 ICVs in most states
but perform better in populous states like Florida,
Texas, and Georgia. Altering NOX/NMOG ratios to

70:30 from 50:50 did not significantly change the res-
ults, with a 3% increase in total deaths (41 deaths).
On the other hand, EVs have lower CO2 emis-
sions in all states except West Virginia (state carbon
intensity of 876 gCO2/kWh) (figure 2(b)). Removing
or retrofitting 50 most SO2 plants achieves health
damages parity between EVs and Tier-3 ICVs for
almost all states except West Virginia and Kentucky
(figure 3).

Figure 4 compares damages from changing the
US LDV fleet to EVs and Tier 3 ICVs for the 50
most populous MSAs in the U.S. 55% of health
damages (∼9 k out of 16 k deaths) from the
current LDV fleet occur in the 50 most popu-
lous MSAs. Fleet-wide change to Tier-3 ICVs and
EVs reduces mortality in all. EVs provide more
health benefits than Tier 3 standards in all MSAs
except for a few MSAs in the Ohio River Valley
(figure 4(a)), where power plants are the predomin-
ant source of PM2.5 [85, 86]. A future decarbonized
grid can reduce electrification mortality in the region
(figure 4(b)).
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Figure 3. Comparison of mortality (deaths per 100 000 people) for Tier-3 ICVs and EVs charged on a future decarbonized grid
where 50 power plants with the highest SO2 emissions are retired or retrofitted with carbon capture and storage (CCS).
Post-combustion CCS necessitates the removal of pollutants in flue gas, which include SO2, NOx, and PM2.5.

3.2. Demographic differences and risk gap
Figures 5 and 6 present data on passenger vehicles’
state-level mortality rates by race and ethnicity across
scenarios. Bar height represents the US-wide popu-
lation average mortality rate for each racial and eth-
nic group, while black lines indicate the population-
level mortality rates by state. Previous research has
shown that the current LDV fleet has a greater impact
on people of color than on White Americans, with
Blacks, Latinos, and Asians experiencing higher mor-
tality rates than the population average [5, 29, 42,
87]. Our estimates are consistent with these earlier
findings. Mixed-race also have higher mortality rates

than the population average, while Hawaiian and
Pacific Island groups have lower. Tier 3 vehicles
reduce mortality rates across all groups, but differ-
ences between racial and ethnic groups persist. EVs
have lower relative disparities than ICVs (figures 6
and 7). White Americans, on average, face higher
health consequences than the population average for
electric vehicles charged on the current grid, particu-
larly in states in and near the Midwest (Pennsylvania,
Indiana, Illinois, Virginia, Maryland) (figure 6, SI
section S.6d). Black and Mixed-race Americans also
face higher mortality than the population average
with EVs charged on the current grid. With a
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Figure 4.Mortality (deaths per 100 000 people) associated with passenger transportation for the 50 most populous U.S. MSAs
under different scenarios: (i) the current LDV fleet, (ii) a Tier 3 ICE fleet, and (iii) EVs charged on the current grid (orange, figure
4(a)) and (iv) EVs charged on a future grid where the top 50 SO2 polluting power plants are replaced or retrofit with CCS (green,
figure 4(b)). We assume a Tier 3 FTP and SFTP drive cycle with a 1:1 ratio between NOX and NMOG. The range of values for EVs
corresponds to Nissan Leaf and Tesla Model S. The column on the secondary Y axis shows the state population (in 100 000
people).

Figure 5. State-level transportation-related mortality rate for current LDV fleet, Tier 3 ICV, EVs charged on current and future
electricity grid where 50 power plants with highest SO2 emissions are retired or retrofitted with CCS. The height of the individual
bars denotes the population average mortality of each race and ethnicity across all states in the U.S. In contrast, the black lines
denote the population’s average total mortality rate. The mortality rate is defined as the deaths of a particular race or ethnicity or
overall population in the state divided by the population of a race or ethnicity or the total population in the state multiplied by
100 000.

future grid, Black and Mixed-race Americans con-
tinue to face higher mortality compared to the pop-
ulation average, but the relative disparity for White
Americans declines. Latinos, the second largest ethnic

group in the US, face lower transport-attributable
mortality compared to the population average with
electrification, both with current and future electri-
city grids (figure 6).

10



Environ. Res. Lett. 19 (2024) 034034 M Singh et al

Figure 6. Percentage difference between the mortality of a race/ethnicity compared to the population average mortality for
current LDV fleet, Tier 3 ICVs, EVs charged on the current grid, and a future grid where 50 power plants with the highest SO2

emissions are retired or retrofitted with CCS.

Figure 7. Risk gap of the current LDV fleet compared to Tier-3 ICVs and EVs charged on the current grid. The 50 most populous
MSA (figure 7(a)) and states (figure 7(b)) are arranged in increasing order of risk gap for EVs. The risk gap is the difference
between the highest mortality of a race or ethnicity and the population mortality for the states or MSA.

To further explore the potential of each techno-
logy to reduce pollution disparities, we show the risk
gap for states and MSAs in figure 7. The risk gap is
the difference between the mortality rate of the most

burdened race or ethnicity and that of the overall
population of a state or MSA. It is a race-agnostic
term used only to capture the differences in pollu-
tion disparities between transportation choices. The
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states and top 50 most populous MSAs are arranged
in increasing order of risk gap for EVs. The risk gap
decreases with fleet-wide shifts from the current fleet
to either Tier 3 ICVs or EVs. An overall switch to
EVs (current grid) leads to a lower or almost com-
parable risk gap with a few exceptions (St. Louis, New
York, Houston, and Cincinnati MSAs, andWyoming,
Arkansas, Delaware, West Virginia, and New York
states).

3.3. The benefits from electrification or moving to
Tier-3 ICV by urbanization and income
Electrifying transportation moves the air pollution
from the tailpipe in urban areas to smokestacks
of power plants, usually located in areas far from
cities [24]. Our results show that while EVs and
Tier 3 ICVs both reduce transportation-attributable
mortality, they affect rural and urban populations,
races and ethnicities, and income groups differently.
Figure 8 displays the dependence between income
and transport-related mortality categorized by vari-
ous races and ethnicities for urban and rural popu-
lations. The mortality rates are compared across the
median household income data for census tracts from
ACS 2016–2020 for the current LDV fleet (top row),
full electrification using a high-range EV charged
on the current grid, and Tier 3 vehicles (FTP drive
cycle, 50/50 ratio assumed). The colored lines and
marker size correspond to race/ethnicity and their
population in the income brackets, and the black
line represents the population’s average mortality
rate. Tracts with a population density above 500 per
square mile are defined as urban, while those less
are rural as per the 2020 Census urban areas criteria
[88].

Both technologies reduced mortality rates for
all income groups, races, and ethnicities com-
pared to the current fleet. White Americans have
lower mortality compared to the population aver-
age in all scenarios except in low-income census
tracts. Transport-attributable mortality decreases
with increasing income for Asians in urban areas.
However, similar trends do not hold for Black and
Latino Americans, who see an increase in mortality
with income, with a striking increase in urban areas.
Our results suggest that within richer urban census
tracts, Black and Latino residents have significantly
higher transportation-attributable pollution mor-
tality than the population average. Latinos in rural
low-income census tracts, though not in high num-
bers, have disproportionately high mortality with
conventional vehicle technologies. Similar figures for
tier 3 ICVs on SFTP drive cycle and high-range EVs
charged on the future grid where the top 50 SO2 pol-
luting plants are retired are available in SI section
S6e.

4. Discussion

This study examines whether using electric vehicles
and Tier 3 gasoline vehicles can reduce fleet-
wise mortality and disparities associated with
transportation-related health impacts and GHG
emissions. The current light-duty fleet is an import-
ant source of premature mortality due to PM2.5 emis-
sions, especially in urban areas. 55% of health dam-
ages (∼9000 deaths out of 16 000) due to the current
LDV fleet occur in the 50 most populous MSAs. A
transition to EVs and the most efficient Tier 3 ICVs
can substantially reduce the health damages from
air pollution associated with the transportation sec-
tor. Under the current electricity grid, a fleet-wide
shift to EVs improves health outcomes in many states
and most MSAs compared to Tier-3 ICVs, suggesting
that rapid electrification in those locations will be
the best health and environmental benefits strategy.
Retiring or retrofitting the 50 most polluting coal
power plants closes the current gap of health con-
sequences between EVs and Tier-3 ICVs. Lastly, EVs
reduce pollution exposure disparities in most states
and MSAs.

EVs have lower or comparable mortality to
Tier-3 ICVs in the four most populous states—
California, Texas, New York, and Florida, although
in New York, EVs have a higher risk gap than Tier-
3 ICVs. Electrification benefits on current electri-
city would be delayed for the Ohio Valley region and
neighboring states, which includes Kentucky, West
Virginia, Pennsylvania, Ohio, and Indiana, owing to
the high number of operational coal power plants
that currently contribute significantly to ambient
PM2.5. Retirement or CCS retrofit in 50 power
plants with the highest SO2 emissions can achieve
the required air quality parity between EVs and
Tier 3 ICVs in this region, except in West Virginia
and Kentucky, which will require further pollution
reduction.

If the country continues to rely on gasoline
vehicles, a move towards Tier 3 vehicles would
provide large benefits regarding air pollution dam-
ages from passenger vehicles. We note, however,
that this ignores another damage associated with
gasoline vehicles: the emissions of GHGs that lead
to climate change. Furthermore, real-world emis-
sions from these Tier 3 vehicles may deviate from
laboratory-tested conditions, and vehicle emissions
increase with age and mileage.

Our work has a few limitations. Firstly, while
InMAP improves spatial granularity of reduced
complexity chemical transport modeling, it can-
not capture hyperlocal impacts of transportation-
related air pollution, such as near-source proxim-
ity to freeways, and emissions can drastically vary
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Figure 8. Transport attributable premature mortality for current LDV fleet, high-range EVs charged on the current grid, and tier
3 ICV dependence on median household income in rural and urban census tracts. Census tracts with a population density of
more than 500 per square mile are characterized as urban. Note different Y-axis limits.

within a small geographic region [89]. Secondly,
our concentration-response function and the under-
lying mortality rate are assumed to be the same
across races and ethnicities. New studies show there
could be differences [90]. Thirdly, this work does not
take into account ammonia emissions (contributing
to secondary PM2.5 formation) from conventional
vehicles equipped with selective catalytic reactors
[63–65].

Electric vehicles have enormous potential to
reduce GHGs and air pollution. At the same time,
vehicle exhaust emissions standards have been an
essential and effective tool in reducing pollution from
conventional vehicles [21]. Several policy recom-
mendations arise from our work. The first takeaway
from our work is to hasten the current fleet turnover
and, if possible, remove older, more polluting vehicles
from the fleet. Despite the poor cost-effectiveness of
the Cash for Clunkers program in the late 2000s,
strategic removal of older, more polluting conven-
tional vehicles may be worth a revisit. The second
policy choice that policymakers face is which types
of vehicles to promote to replace older vehicles
with. This strategy can be geographically hetero-
geneous. Electrification on the current grid has
better health outcomes than the strictest emis-
sions standards in many parts of the United States
and in almost most MSAs. However, the targeted
retirement of coal power plants will be needed in

parts of the US for EVs to break even to Tier 3
vehicles, especially in Ohio Valley and neighboring
states.
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[57] Koolik L, Alvarado Á, Budahn A, Plummer L, Marshall J and
Apte J 2023 PM2.5 exposure disparities persist despite strict
vehicle emissions controls in California ChemRxiv (https://
doi.org/10.26434/chemrxiv-2023-669ws)

[58] Ribeiro C B, Rodella F H C and Hoinaski L 2022 Regulating
light-duty vehicle emissions: an overview of US, EU, China
and Brazil programs and its effect on air quality Clean
Technol. Environ. Policy 24 851–62

[59] U. C. Bureau Vehicles available (Census.gov) (available at:
www.census.gov/programs-surveys/acs/) (Accessed 1 June
2022)

[60] Bureau of Transportation Statistics Average weekday
household person-miles traveled by U.S. Census Tract (per
day) (available at: www.bts.gov/browse-statistical-products-
and-data/surveys/average-weekday-household-person-
miles-traveled-us) (Accessed 17 June 2022)

[61] Timmers V R J H and Achten P A J 2016 Non-exhaust PM
emissions from electric vehicles Atmos. Environ.
134 10–17

[62] Harrison R M, Allan J, Carruthers D, Heal M R, Lewis A C,
Marner B, Murrells T and Williams A 2021 Non-exhaust
vehicle emissions of particulate matter and VOC from road
traffic: a review Atmos. Environ. 262 118592

[63] Sun K et al 2017 Vehicle emissions as an important urban
ammonia source in the United States and China Environ. Sci.
Technol. 51 2472–81

[64] Farren N J, Davison J, Rose R A, Wagner R L and
Carslaw D C 2020 Underestimated ammonia emissions from
road vehicles Environ. Sci. Technol. 54 15689–97

[65] Huang C et al 2018 Ammonia emission measurements for
light-duty gasoline vehicles in China and implications for
emission modeling Environ. Sci. Technol. 52 11223–31

[66] U.S EPA Annual certification data for vehicles, engines, and
equipment (available at: www.epa.gov/compliance-and-fuel-
economy-data/annual-certification-data-vehicles-engines-
and-equipment) (Accessed 9 June 2022)

[67] American Automobile Association Electric Vehicle Range
Testing Report (available at: www.aaa.com/AAA/common/
AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf)
(Accessed 18 July 2022)

[68] US EPA Power plants and neighboring communities
(available at: www.epa.gov/airmarkets/power-plants-and-
neighboring-communities) (Accessed 12 June 2022)

[69] Office of Energy Efficiency and Renewable Energy:
Land-Based Wind Market Report 2022 Edition (available at:
https://www.energy.gov/eere/wind/articles/land-based-
wind-market-report-2022-edition) (Accessed 20 Feb 2024)

[70] U.S. Energy Information Administration (EIA) Wind, solar,
and batteries increasingly account for more new U.S. power
capacity additions (available at: www.eia.gov/todayinenergy/
detail.php?id=55719) (Accessed 28 June 2023)

[71] Electricity Markets and Policy Group Queued Up:
characteristics of power plants seeking transmission
interconnection (available at: https://emp.lbl.gov/queues)
(Accessed 28 June 2023)

[72] Zenodo InMAP source-receptor matrix (ISRM) dataset
(available at: https://zenodo.org/record/2589760) (Accessed
17 June 2022)

[73] Clark L P, Harris M H, Apte J S and Marshall J D 2022
National and intraurban air pollution exposure disparity
estimates in the United States: impact of data- aggregation
spatial scale Environ. Sci. Technol. Lett. 9 786–91

[74] Apte J S, Marshall J D, Cohen A J and Brauer M 2015
Addressing global mortality from ambient PM2.5 Environ.
Sci. Technol. 49 8057–66

[75] Meng J, Li C, Martin R V, van Donkelaar A, Hystad P and
Brauer M 2019 Estimated long-term (1981–2016)
concentrations of ambient fine particulate matter across
North America from chemical transport modeling, satellite
remote sensing, and ground-based measurements Environ.
Sci. Technol. 53 5071–9

[76] CDCWONDER (available at: https://wonder.cdc.gov/)
(Accessed 6 April 2023)

[77] Khan S S, Krefman A E, McCabe M E, Petito L C, Yang X,
Kershaw K N, Pool L R and Allen N B 2022 Association
between county-level risk groups and COVID-19 outcomes
in the United States: a socioecological study BMC Public
Health 22 81

[78] Formanack A, Doshi A, Valdez R, Williams I, Moorman J R
and Chernyavskiy P 2023 Race, class, and place modify
mortality rates for the leading causes of death in the United
States, 1999–2021 J. Gen. Intern. Med. 38 2686–94

[79] Dukhovnov D and Barbieri M 2021 County-level
socio-economic disparities in COVID-19 mortality in the
USA Int. J. Epidemiol. 51 418–28

[80] Burnett R et al 2018 Global estimates of mortality associated
with long-term exposure to outdoor fine particulate matter
Proc. Natl Acad. Sci. USA 115 9592–7

[81] Schivley G, Azevedo I and Samaras C 2018 Assessing the
evolution of power sector carbon intensity in the United
States Environ. Res. Lett. 13 064018

[82] C. P. S. C. Index US power sector emissions (CMU Power
Sector Carbon Index) (available at: https://emissionsindex.
org) (Accessed 25 November 2022)

[83] Federal Register: 2017 and later model year light-duty vehicle
greenhouse gas emissions and corporate average fuel
economy standards (available at: www.federalregister.gov/
documents/2011/12/01/2011-30358/2017-and-later-model-
year-light-duty-vehicle-greenhouse-gas-emissions-and-
corporate-average-fuel) (Accessed 18 July 2022)

[84] U.S. Department of Transportation 2019 Bureau of
transportation statistics (National Transportation Statistics
(NTS)) (https://doi.org/10.21949/1503663)

[85] Jolley G J, Khalaf C, Michaud G and Sandler A M 2019 The
economic, fiscal, and workforce impacts of coal-fired power
plant closures in Appalachian Ohio Reg. Sci. Policy Pract.
11 403–22

[86] Anderson R R, Martello D V, White C M, Crist K C, John K,
Modey W K and Eatough D J 2004 The regional nature of

15

https://barney.ce.cmu.edu/%E2%88%BCjinhyok/easiur/
https://barney.ce.cmu.edu/%E2%88%BCjinhyok/easiur/
https://public.tepper.cmu.edu/nmuller/APModel.aspx
https://doi.org/10.1016/j.dib.2019.104886
https://doi.org/10.1016/j.dib.2019.104886
https://doi.org/10.1088/1748-9326/ab1ab5
https://doi.org/10.1088/1748-9326/ab1ab5
https://www.epa.gov/egrid
https://www.epa.gov/egrid/egrid-related-materials
https://www.epa.gov/egrid/egrid-related-materials
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs
https://doi.org/10.1038/s41598-024-51697-1
https://doi.org/10.1038/s41598-024-51697-1
https://doi.org/10.1038/s41612-018-0037-5
https://doi.org/10.1038/s41612-018-0037-5
https://doi.org/10.3390/atmos13050650
https://doi.org/10.3390/atmos13050650
https://doi.org/10.26434/chemrxiv-2023-669ws
https://doi.org/10.26434/chemrxiv-2023-669ws
https://doi.org/10.1007/s10098-021-02238-1
https://doi.org/10.1007/s10098-021-02238-1
https://www.census.gov/programs-surveys/acs/
https://www.bts.gov/browse-statistical-products-and-data/surveys/average-weekday-household-person-miles-traveled-us
https://www.bts.gov/browse-statistical-products-and-data/surveys/average-weekday-household-person-miles-traveled-us
https://www.bts.gov/browse-statistical-products-and-data/surveys/average-weekday-household-person-miles-traveled-us
https://doi.org/10.1016/j.atmosenv.2016.03.017
https://doi.org/10.1016/j.atmosenv.2016.03.017
https://doi.org/10.1016/j.atmosenv.2021.118592
https://doi.org/10.1016/j.atmosenv.2021.118592
https://doi.org/10.1021/acs.est.6b02805
https://doi.org/10.1021/acs.est.6b02805
https://doi.org/10.1021/acs.est.0c05839
https://doi.org/10.1021/acs.est.0c05839
https://doi.org/10.1021/acs.est.8b03984
https://doi.org/10.1021/acs.est.8b03984
https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-engines-and-equipment
https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-engines-and-equipment
https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-engines-and-equipment
https://www.aaa.com/AAA/common/AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf
https://www.aaa.com/AAA/common/AAR/files/AAA-Electric-Vehicle-Range-Testing-Report.pdf
https://www.epa.gov/airmarkets/power-plants-and-neighboring-communities
https://www.epa.gov/airmarkets/power-plants-and-neighboring-communities
https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2022-edition
https://www.energy.gov/eere/wind/articles/land-based-wind-market-report-2022-edition
www.eia.gov/todayinenergy/detail.php?id=55719
www.eia.gov/todayinenergy/detail.php?id=55719
https://emp.lbl.gov/queues
https://zenodo.org/record/2589760
https://doi.org/10.1021/acs.estlett.2c00403
https://doi.org/10.1021/acs.estlett.2c00403
https://doi.org/10.1021/acs.est.5b01236
https://doi.org/10.1021/acs.est.5b01236
https://doi.org/10.1021/acs.est.8b06875
https://doi.org/10.1021/acs.est.8b06875
https://wonder.cdc.gov/
https://doi.org/10.1186/s12889-021-12469-y
https://doi.org/10.1186/s12889-021-12469-y
https://doi.org/10.1007/s11606-023-08062-1
https://doi.org/10.1007/s11606-023-08062-1
https://doi.org/10.1093/ije/dyab267
https://doi.org/10.1093/ije/dyab267
https://doi.org/10.1073/pnas.1803222115
https://doi.org/10.1073/pnas.1803222115
https://doi.org/10.1088/1748-9326/aabe9d
https://doi.org/10.1088/1748-9326/aabe9d
https://emissionsindex.org
https://emissionsindex.org
https://www.federalregister.gov/documents/2011/12/01/2011-30358/2017-and-later-model-year-light-duty-vehicle-greenhouse-gas-emissions-and-corporate-average-fuel
https://www.federalregister.gov/documents/2011/12/01/2011-30358/2017-and-later-model-year-light-duty-vehicle-greenhouse-gas-emissions-and-corporate-average-fuel
https://www.federalregister.gov/documents/2011/12/01/2011-30358/2017-and-later-model-year-light-duty-vehicle-greenhouse-gas-emissions-and-corporate-average-fuel
https://www.federalregister.gov/documents/2011/12/01/2011-30358/2017-and-later-model-year-light-duty-vehicle-greenhouse-gas-emissions-and-corporate-average-fuel
https://doi.org/10.21949/1503663
https://doi.org/10.1111/rsp3.12191
https://doi.org/10.1111/rsp3.12191


Environ. Res. Lett. 19 (2024) 034034 M Singh et al

PM2.5 episodes in the upper Ohio river valley J. Air Waste
Manage. Assoc. 54 971–84

[87] Holland S P, Hughes J E, Knittel C R and Parker N C 2015
Some inconvenient truths about climate change policy: the
distributional impacts of transportation policies Rev. Econ.
Stat. 97 1052–69

[88] U.S Census Bureau: 2020 Census Urban Areas FAQs
(available at: https://www2.census.gov/geo/pdfs/reference/
ua/Census_UA_2020FAQs.pdf) (Accessed 20 Feb 2024)

[89] Chambliss S E, Pinon C P R, Messier K P, LaFranchi B,
Upperman C R, Lunden MM, Robinson A L, Marshall J D
and Apte J S 2021 Local- and regional-scale racial and ethnic
disparities in air pollution determined by long-term mobile
monitoring Proc. Natl Acad. Sci. 118 e2109249118

[90] Spiller E, Proville J, Roy A and Muller N Z 2021 Mortality
risk from PM2.5: a comparison of modeling approaches to
identify disparities across racial/ethnic groups in policy
outcomes Environ. Health Perspect. 129 127004

16

https://doi.org/10.1080/10473289.2004.10470967
https://doi.org/10.1080/10473289.2004.10470967
https://doi.org/10.1162/REST_a_00452
https://doi.org/10.1162/REST_a_00452
https://www2.census.gov/geo/pdfs/reference/ua/Census_UA_2020FAQs.pdf
https://www2.census.gov/geo/pdfs/reference/ua/Census_UA_2020FAQs.pdf
https://doi.org/10.1073/pnas.2109249118
https://doi.org/10.1073/pnas.2109249118
https://doi.org/10.1289/EHP9001
https://doi.org/10.1289/EHP9001

	Distributional impacts of fleet-wide change in light duty transportation: mortality risks of PM2.5 emissions from electric vehicles and Tier 3 conventional vehicles
	1. Introduction
	2. Methods and data
	2.1. Assumptions regarding driving patterns
	2.2. Census data
	2.3. Baseline: characterization of the current LDV transportation fleet
	2.4. Scenario 1: fleetwide adoption of gasoline Tier-3 ICV
	2.5. Scenario 2: fleetwide adoption of electric vehicles
	2.6. Modeling the change in PM2.5 concentration
	2.7. Estimating health damages due to PM2.5

	3. Results
	3.1. Switching the U.S. LDV fleet to EVs or Tier-3 ICVs reduces premature mortality from air pollution in all states and metropolitan statistical areas (MSA)
	3.2. Demographic differences and risk gap
	3.3. The benefits from electrification or moving to Tier-3 ICV by urbanization and income

	4. Discussion
	References


