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Findings 

Census data is crucial to understand energy and environmental justice outcomes 
such as poor air quality which disproportionately impact people of color in the 
U.S. Wwith the advent of sophisticated personal datasets and analysis, Census 
Bureau is considering adding top-down noise (differential privacy) and post-
processing 2020 census data to reduce the risk of identification of individual 
respondents. Using 2010 demonstration census and pollution data, I find that 
compared to the original census, differentially private (DP) census significantly 
changes ambient pollution exposure in areas with sparse populations. White 
Americans have lowest variability, followed by Latinos, Asian, and Black 
Americans. DP underestimates pollution disparities for SO2 and PM2.5 while 
overestimates the pollution disparities for PM10. 

1. Questions 
Researchers studying energy systems and decarbonization rely heavily on 
census data to understand environmental justice outcomes (Brockway, Conde, 
and Callaway 2021; Burger 2019; Tessum et al. 2021; Thind et al. 2019). 
Population counts of different racial and ethnic groups at various spatial 
resolutions – state, county, census tract, block groups, and blocks – are used 
to find out which populations are adversely affected and where do they reside. 
Finer data resolution can help identify specific neighborhoods and 
communities for targeted energy and environmental policies by government. 
At the same time, Census Bureau is required by law to protect the privacy 
of Census participants and has implemented various disclosure avoidances 
systems (DAS) since 1960s. The bureau introduced a new DAS called 
differential privacy (DP) for the Census data of 2020. DP injects top-down 
random noise to Census tabulations. Noise is smallest at the national or state 
level and highest for smaller spatial units such as block group or blocks. Various 
post-processing steps, though not formally part of differential privacy, are 
required to maintain the facial validity of census products (Kenny et al. 2021). 
The question is whether the infusion of random noise coupled with post-
processing adjustments lead to unintentional systemic deviations in 
understanding environmental justice outcomes. 

Air quality is a useful case-study to investigate in this context. Air pollution 
can vary significantly across small distances. Estimates of exposure disparities 
are impacted by the spatial resolution at the level of input (spatial unit at 
which outcome is observed) as well as level of aggregation (spatial unit at 
which outcome is reported). Pollution exposure, which can change over short 
distances, is more accurately observed at finer spatial scale, usually block or 
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block-group level data, while increasing the level of aggregation to larger spatial 
resolution (state or county level) underestimates disparities compared to census 
tract or block group level aggregation (Clark et al. 2022; Paolella et al. 2018). 
Noise and adjustments in census data can significantly alter these estimates. 

In this piece, I answer how introducing differential privacy in Census data 
impact: 

2. Methods 
I use population data at census block group level (CBG) from the original 2010 
Census and from the latest experimental runs of differential privacy algorithm 
applied to the original 2010 Census (Vintage 2022-08-25) from IPUMS 
NHGIS (Manson et al. 2022). Americans who identify as non-Hispanic blacks 
only, non-Hispanic whites only, non-Hispanic Asians only, non-Hispanic 
native American and American Indian only are referred to as Blacks, Whites, 
Asians, and Native Americans in this work. Latinos include all Americans 
who identify as Latinos or Hispanics. Americans who identify as mixed race 
aren’t included in this analysis. I use census block group level (CBG) ambient 
pollution estimates of four air pollutants (PM2.5, PM10, NO2, SO2) for the 
year 2010 from the Center for Air, Climate and Energy Solutions (“The 
Center for Air, Climate, and Energy Solutions” n.d.) as described in published 
work (Kim et al. 2020). 

Exposure of pollutant i by race and ethnicity j is aggregated to census tract level 
and county level is given as: 

Where  denotes the ambient pollution estimate of pollutant 
in each census block group  and  denotes the total 
population or population of race/ethnicity  in each census block group 

 summed over all census block groups in a census tract or county. 
Figure 1 and 2 plot the percentage difference of exposure of pollutants 
experienced by total population and different race and ethnicity in the 
differentially private census compared to the original census aggregated at 
county and census tract level respectively. Census tracts or counties with any 
population count of 0 in either original or differentially private census are 
removed. 

1. Air pollution exposure of different race and ethnicity in the United 
States 

2. Exposure disparities when aggregated to county and census tract 
levels. 
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To understand the impact of differential private census products on pollution 
disparities, I estimate risk gap at county and census tract levels. Risk gap is 
defined as the difference between the pollution exposure of most burdened 
group, i.e., maximum value of exposure for a race and ethnicity as calculated 
above and the total population average exposure. 

Where  is pollution exposure of pollutant i by 
race and ethnicity j in census tract or county and 

 is the pollution exposure of pollutant i 
for the entire population in census tract or county. Figure 3 plots the ratio of 
risk gap calculated using the DP and original census by the population average 
pollution exposure at census tract and county. Ratio above (below) 1 denotes 
that DP census shows larger (smaller) risk gap compared to the original census. 

3. Findings 
Differential privacy in census data significantly changes the ambient pollution 
exposure in small spatial units with sparse population of people of color (Figure 
1 and 2). Census tracts have higher variations than counties. White American 
have the lowest variance in exposure, followed by Latinos, Asian, and Black 
Americans. This is, in part, due to post-processing procedure which gives 
priority to the accuracy counts for the largest racial group in an area. The 
changes in pollution exposure also depends on the pollutant. For example, 
in counties with sparse population of Asian and Black Americans, the NO2 
exposure changes can be as high as +/- 50%. Exposure differences nullify for 
larger population counts. 

Figure 3 displays the ratio of the risk gap calculated by DP census and original 
census with ambient pollutant levels for both county and census tract 
aggregation. Differentially private census underestimates (ratio less than 1) the 
disparity for SO2 in both county and census tract aggregations. The ratio 
decreases with higher levels of ambient SO2. DP overestimates the risk gap 
associated with PM10 for both county and census tract compared to original 
census (ratio greater than 1), with the ratio increasing as the ambient pollution 
of PM10 increases. The trends in risk gap ratio at the county level for NO2 and 
PM2.5 are not significant, but DP significantly underestimates the disparity for 
PM2.5 at the census tract level, particularly in more polluted census tracts. 
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Figure 1. Percentage change in air pollution exposure (PM10, PM2.5, NO2, and SO2 ) of total population and different 
racial and ethnic groups in differentially private census compared to the original census for year 2010 aggregated at county 
level. 

X axis for each plot shows the logarithm (base 10) of population count of specific racial and ethnic group or the total population. 
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Figure 2. Percentage change in air pollution exposure (PM10, PM2.5, NO2, and SO2 ) of total population and different 
racial and ethnic groups in differentially private census compared to the original census for year 2010 aggregated at census 
tract level. 

X axis for each plot shows the logarithm (base 10) of population count of specific racial and ethnic group or the total population. 
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Figure 3. Ratio of risk gap for pollutants at county (left) and census tract (right) level of DP census compared to the 
original census. 

X axis shows the population average concentration of pollutant in a county or census tract. Risk gap is defined as the difference between 
the pollution exposure of the most burdened race and ethnicity compared to the population average exposure. Ratio less than 1 indicates 
that DP underestimates pollution disparity compared to the original census and vice-versa. 
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